Downregulation of eIF4G by microRNA-503 enhances drug sensitivity of MCF-7/ADR cells through suppressing the expression of ABC transport proteins

نویسندگان

  • Xia Pan
  • Xiaoyan Yang
  • Jinglei Zang
  • Si Zhang
  • Nan Huang
  • Xinxin Guan
  • Jianhua Zhang
  • Zhihui Wang
  • Xi Li
  • Xiaoyong Lei
چکیده

Overexpression of adenosine triphosphate-binding cassette (ABC) transport protein is emerging as a critical contributor to anticancer drug resistance. The eukaryotic translation initiation factor (eIF) 4F complex, the key modulator of mRNA translation, is regulated by the phosphoinositide 3-kinase-AKT-mammalian target of rapamycin pathway in anticancer drug-resistant tumors. The present study demonstrated the roles of ABC translation protein alterations in the acquisition of the Adriamycin (ADM)-resistant phenotype of MCF-7 human breast cells. Quantitative polymerase chain reaction and western blot analysis were applied to examine the differences in mRNA and protein levels, respectively. It was found that the expression of the ABC sub-family B member 1, ABC sub-family C member 1 and ABC sub-family G member 2 transport proteins were upregulated in MCF-7/ADR cells. An MTT assay was used to detect the cell viability, from the results MCF-7/ADR cells were less sensitive to ADM, tamoxifen (TAM) and taxol (TAX) treatment compared with MCF-7 cells. We predicted that the 3'-untranslated region of eukaryotic translation initiation factor 4-γ 1 (eIF4G) contains a potential miRNA binding site for microRNA (miR)-503 through using computational programs. These binding sites were confirmed by luciferase reporter assays. eIF4G mRNA degradation was accelerated in cells transfected with miR-503 mimics. Furthermore, it was demonstrated that eIF4G and ABC translation proteins were significantly downregulated in MCF-7/ADR cells after transfection with miR-503. It was found that miR-503 mimics could sensitize the cells to treatment with ADM, TAM and TAX. These findings demonstrated for the first time that eIF4G acted as a key factor in MCF-7/ADR cells, and may be an efficient agent for preventing and reversing multi-drug resistance in breast cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Critical Dose of Doxorubicin Is Required to Alter the Gene Expression Profiles in MCF-7 Cells Acquiring Multidrug Resistance

Cellular mechanisms of multidrug resistance (MDR) are related to ABC transporters, apoptosis, antioxidation, drug metabolism, DNA repair and cell proliferation. It remains unclear whether the process of resistance development is programmable. We aimed to study gene expression profiling circumstances in MCF-7 during MDR development. Eleven MCF-7 sublines with incremental doxorubicin resistance w...

متن کامل

MMP1 expression is activated by Slug and enhances multi-drug resistance (MDR) in breast cancer

High matrix metalloproteinase 1 (MMP1) expression is associated with enhanced breast cancer growth and metastasis and also might predict poor prognosis. In this study, we further investigated the functional role of MMP1 and how it is upregulated in multi-drug resistant (MDR) breast cancer cells. By retrieving microarray data in GEO datasets and the survival data in the Kaplan Meier plotter, we ...

متن کامل

CRISPR/Cas9, a new approach to successful knockdown of ABCB1/P-glycoprotein and reversal of chemosensitivity in human epithelial ovarian cancer cell line

Objective(s): Multidrug resistance (MDR) is a major obstacle in the successful chemotherapy of ovarian cancer. Inhibition of P-glycoprotein (P-gp), a member of ATP-binding cassette (ABC) transporters, is a well-known strategy to overcome MDR in cancer. The aim of this study was to investigate the efficiency and ability of CRISPR/Cas9 genome editing technology to knockdown ABCB1 gene expression ...

متن کامل

miRNA-200c increases the sensitivity of breast cancer cells to doxorubicin through the suppression of E-cadherin-mediated PTEN/Akt signaling.

Doxorubicin (ADR) is successfully used to treat breast cancer, however, it is often associated with the acquired resistance of breast cancer cells which eliminates the therapeutic efficiency of ADR, leading to relapse and a poorer prognosis. It has been reported that microRNA-200c (miRNA-200c), a non-coding RNA, is important in the epithelial to mesenchymal transition (EMT) and metastasis in br...

متن کامل

Galectin-1 knockdown improves drug sensitivity of breast cancer by reducing P-glycoprotein expression through inhibiting the Raf-1/AP-1 signaling pathway

Galectin-1 (Gal-1), a member of the galectin family of carbohydrate binding proteins, plays a pivotal role in various cellular processes of tumorigenesis. The regulatory effect of Gal-1 on multidrug resistance (MDR) breast cancer cells is still unclear. qRT-PCR and western blot showed that Gal-1 and MDR gene 1 (MDR1) were both highly expressed in breast tumor tissues and cell lines. MTT assay a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017